

Alimentos *Light*, *Diet* e Funcionais: Atualização, ingredientes especiais e sucessos de mercado

Leandro Teixeira

Eng. Suporte Técnico

BU Sweeteners

Danisco Brasil Ltda.

Agenda

Introdução

Light & Diet: Conceitos

Conceitos Nutricionais

Ingredientes Especiais

Legislação

Produtos de Mercado

Conclusão

Motivadores do mercado de alimentos saudáveis

Aumento da renda e tendência para juventude eterna →+demanda por produtos saúde e bem-estar

Marcas estão se re-posicisionando com imagem mais saudável (Mc Donalds)

Aumento da ocorrência de **auto-prevenção** e responsabilidade pessoal para os cuidados com a saúde

Aumento de consciência sobre "erosão" na saúde pessoal, conduzida por estilos de vida estressantes e falta de exercícios. Pe., as doenças crônicas correspondem a 60% das mortes globais.

Fonte: Euromonitor

Mercado de alimentos:

Saúde & Nutrição* 2006 (valor de varejo)

- US\$ 462 bi
- 24% do total de alimentos

Alegações mostrando "what is in it for me" importantes

Obesos procuram por produtos "better for you" para perda de peso com bom sabor

orgânico, emagrecedores, suplementos dietéticos

* "Better for you", alimentos funcionais, alergia, herbal, natural,

Mídia e autoridades tornaram os consumidores mais instruídos. mas também mais confusos em relação à saúde e nutrição

Alimentação x "Health & Nutrition"

Soluções - através de benefícios tecnológicos

Soluções – através de benefícios fisiológicos

Suco de laranja

Bebida carbonatada

Sugar-free / 0 calorias bebida carbonatada

logurte probiótico

5g de carboidratos disponíveis por porção

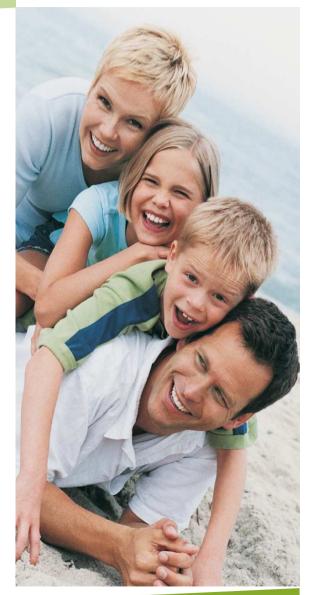
Maid

Margarina com fibras e cálcio

Agenda

Introdução

Light & Diet: Conceitos


Conceitos Nutricionais

Ingredientes Especiais

Legislação

Produtos de Mercado

Conclusão

O termo "DIET"

Dietéticos: supressão de algum componente

- O termo está bem assimilado
- Mal interpretado
- Sua tradução mais correta é dieta

- → "Sem açúcar"
 - Máx. 0,5% açúcares
- "Sem adição de açúcar"
 - Sem adição proposital de açúcares
 - permite açúcares naturalmente presentes nas matérias-primas.

Referência: Portaria SVS/MS 29/98

O termo "LIGHT"

Redução: mín. de 25% componente ou atributo

(Light em açúcar: redução mínima de 25% de açúcares e diferença maior que 5g/100g ou 100 mL de produto)

Exemplos:

- "Light" em Açúcar

- "Light" em Calorias.

Referência: Portaria SVS/MS 27/98

Light & Diet - Desafios Técnicos

- → Desenvolvimento de produtos *light* e *diet*.
 - Conhecimento das funções dos ingredientes tradicionais
 - Exemplo: açúcar e gordura
 - Conhecimento da funcionalidade do(s) novo(s) ingrediente(s)
- → Substituição do açúcar (método amplamente utilizado)
 - Doçura:
 - Edulcorantes de alta intensidade
 - Corpo
 - Agentes de corpo (ex: polidextrose + Lactitol p/ bolos, biscoitos, sorvetes e chocolates).

Edulcorantes de Alta Intensidade

Edulcorante	Dulçor Relativo
Sacarina	300
Aspartame	180 - 200
→ Acesulfame K	200
Esteviosídeo	300
Ciclamato	30
→ Sucralose	600
Alitame	2000
→ NHDC	340 - 2000

Agente de corpo

São compostos que repõe os sólidos

Exemplos:

- Polióis
 - sorbitol, lactitol, xilitol

Simulam o corpo do açúcar

- Litesse® (polidextrose)
- Amido resistente.

→ Podem ter sabor doce (edulcorante)

→ São de baixas calorias (< 4 kcal/g)</p>

Agenda

Introdução

Light & Diet: Conceitos

Conceitos Nutricionais

Ingredientes Especiais

Legislação

Produtos de Mercado

Conclusão

Fibras Alimentares

Fibra: é qualquer material comestível que não seja hidrolizado pelas enzimas endógenas do trato digestivo humano.

(Definição harmonizada Mercosur - Res. GMC 46/03)

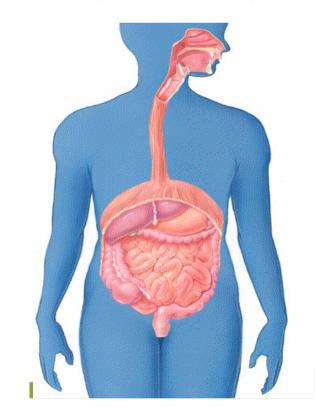
- ✓ Solúveis: associadas ao metabolismo de carboidratos e gorduras
- ✓ Insolúveis: associadas à diminuição do tempo de permanência das fezes e aumento do volume fecal

(Obs.: esta separação não é bem clara, existem muitas exceções)

Ingestão Diária Recomendada

 \checkmark IDR = 25g (OMS / ANVISA).

Prebióticos & Probióticos



Probiótico: "Microorganismos vivos que, quando administrados em quantidades adequadas, conferem benefícios à saúde do hospedeiro"

(Joint FAO/WHO Expert Consultation on Evaluation of Health and Nutritional Properties of Probiotics, 2001)

Prebiótico: Ingredientes nutricionais não digeríveis que afetam beneficamente ao hospedeiro, estimulando seletivamente o crescimento e a atividade de uma ou mais bactérias benéficas do cólon, melhorando a saúde do hospedeiro.

(Gibson & Roberfroid, 1995)

Prebiótico + Probiótico = Simbiótico????

→ Simbióticos

 Uma mistura de pro- e prebióticos que afeta beneficamente o hospedeiro através da melhoria da sobrevivência e implantação de cepas específicas de microorganismos vivos no trato gastro-intestinal

(Gibson & Roberfroid, 1995)

De maneira geral:

Prebiótico + Probiótico = Simbiótico

Observações:

- Nem toda associação entre prebióticos e probióticos possui efeito simbiótico
- Há necessidade de comprovação científica do efeito simbiótico
- Há poucos estudos clínicos disponíveis com relação aos simbióticos.

Agenda

Introdução

Light & Diet: Conceitos

Conceitos Nutricionais

Ingredientes Especiais

Legislação

Produtos de Mercado

Conclusão

Ingredientes Funcionais: Aspectos Importantes

- Aprovação / registro junto à ANVISA
- Segurança de Uso
- Substanciação científica
- Dose-benefício
- Propriedades técnicas
 - Estabilidade
 - Solubilidade
 - Sabor
 - Outras.

Polidextrose

Produto

→ É o resultado da associação de componentes naturais como a glicose, o sorbitol e o ácido cítrico

Principais benefícios

- Fibra solúvel e prebiótico
- Baixo valor calórico (1 kcal/g)
- → Substituto de açúcar e gordura
- → Adequado para diabéticos (IG = 4 7)
- → Não-cariogênico (não promove cáries).

APLICAÇÕES

Produtos panificados, bebidas, chocolate, balas, gomas de mascar, produtos dietéticos, sorvete, produtos lácteos, preparados de fruta

Fibra solúvel e prebiótico

Tolerância: 90g/dia (outras fibras solúveis, geralmente, 15-20g/dia)

Polidextrose - Aplicações

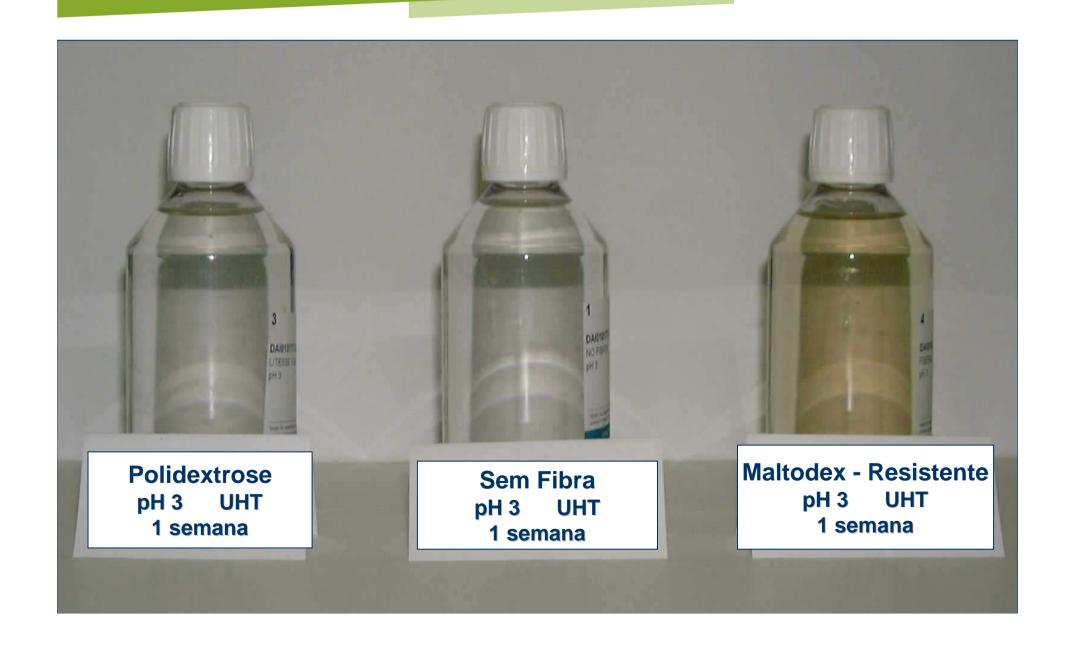
- Agente de corpo
- Substituto de açúcar

Substituto de gordura

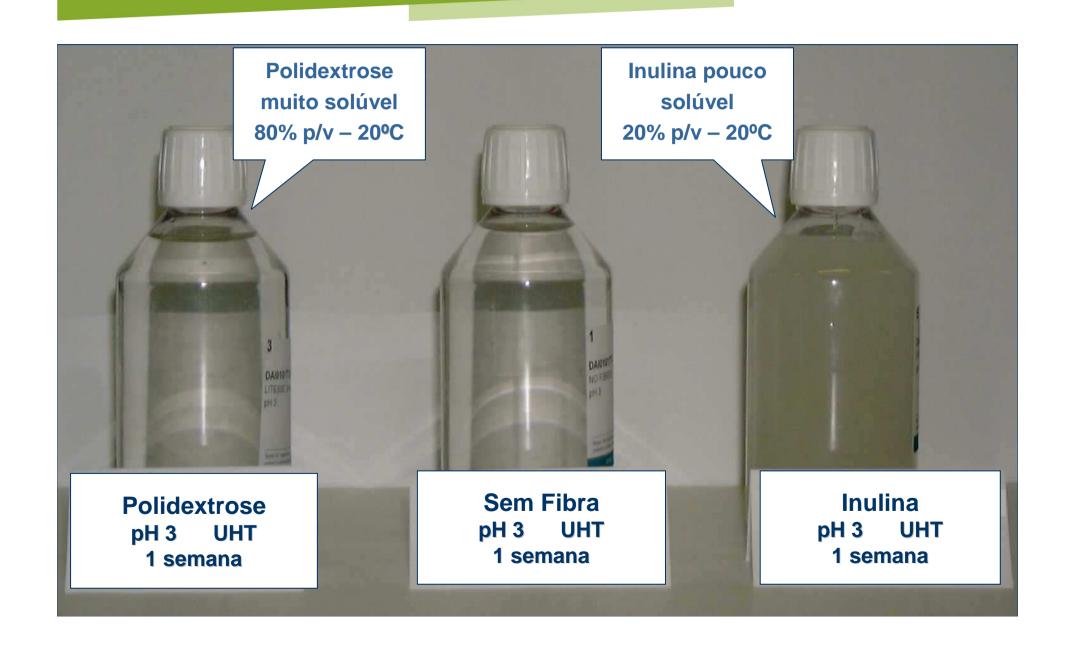
Redução calórica

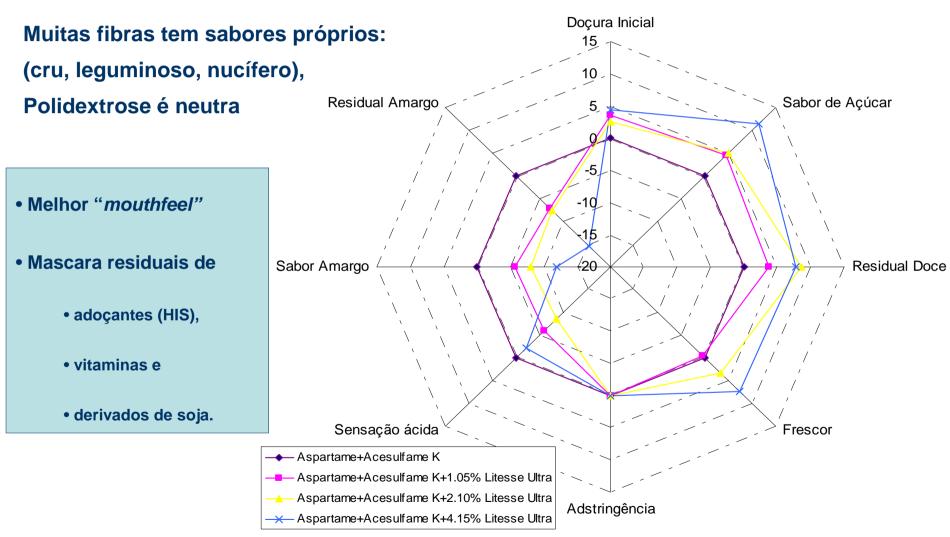
• Fibra alimentar.

Propriedades Técnicas


Polidextrose em Bebidas

- > Fonte de fibras
- Solúvel
- > Transparente
- > Baixo impacto na viscosidade
- Estável
- > Mascara sabor residual de bebidas.


Propriedades Técnicas - Transparência com limpidez


Propriedades Técnicas - Solubilidade

Mascara sabor residual de bebidas

Chipping Campden Food Reasearch Assoc., Confid. Report, Dec. 2001, Sensory Evaluation of sweeteners solutions by means of rapid attribute profile analysis.

Estabilidade ao Processamento

Litesse[®], Litesse[®] Ultra[™] e Inulina a pH 2,6.

Incubação pH 2,6, 100℃ % Aumento de monômeros livres	Tempo (horas)				
	0	1	5		
Litesse®	0.02	0.02	2.28		
Litesse® Ultra TM	0.08	0.3	2.38		
Inulina	0.2	45.4	100		

Condições de Estocagem	% Perda de Fibra					
	Litesse®	Litesse [®] Ultra™				
20°C escuro	0	1.7				
20°C U.V.	2.7	1.7				
-5°C escuro	0	0				
37°C luz	5.9	7.3				

Litesse é estável em amplas faixas de pH e temperatura.

Polidextrose – fibra e prebiótico Estudo Clínico

DANISCO
First you add knowledge...

✓ População: 66 homens e 54 mulheres

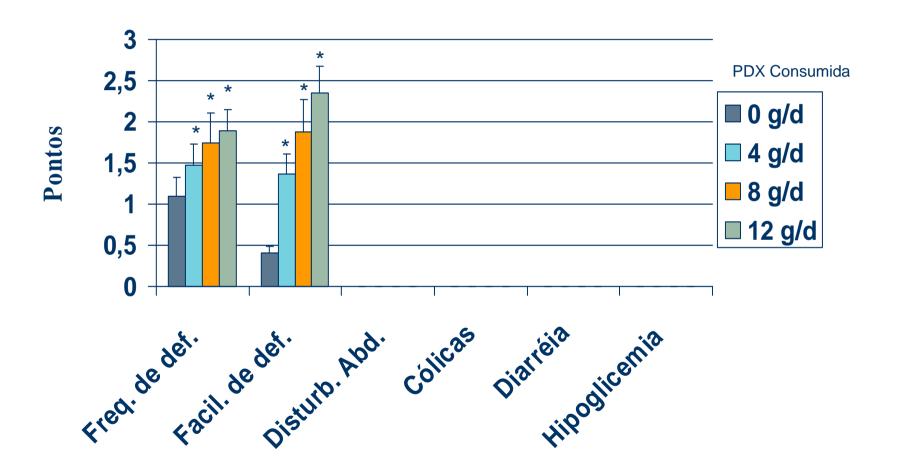
✓ Idade média: 31,2 anos

✓ Duração: 28 dias

✓ Consumo diário de polidextrose (Litesse®):

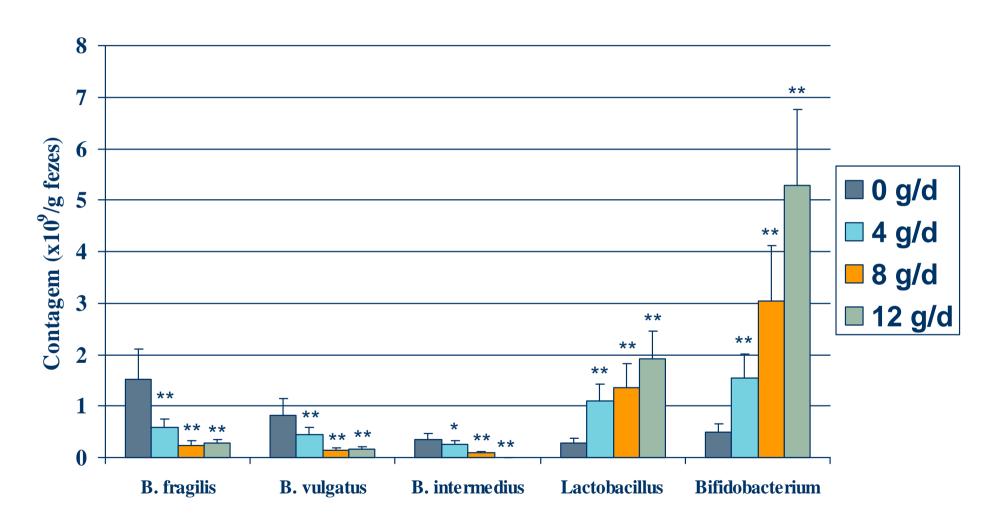
- Grupo 1 (controle) ...0g
- Grupo 2:..... 4g
- Grupo 3:..... 8g
- Grupo 4:.....12g

✓ Conclusão:


" A polidextrose é uma fibra alimentar prebiótica."

Fonte: ZHONG et al (2000)

Polidextrose auxilia o funcionamento do intestino



* p<0.01 para comparação dos resultados com a linha base (0 g/d)

Fonte: ZHONG et al (2000)

Polidextrose - prebiótico Equilíbrio da flora intestinal

* p<0.05, ** p<0.01 para comparação dos resultados com a linha base (0 g/d)

Fonte: ZHONG et al (2000)

Resumo Estudos Clínicos (Humanos)

POSITIVO				Sito	FEZES		A H				SANG	UE			ssos
NENHUM	reltos: Volume	Pastosidad	Tempo de T	на Н	Prebiótico	Fermentação Bacteria	Carcinogêni	Glicose	Triglicerídes	Colesterol	ТОН	707	Crescimento celular	Absorção de Cálcio e Mineralização	
Aumentou Diminuiu	\[\sum_{\text{\tin}\text{\tin}\text{\texi\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texit{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\texi{\text{\text{\text{\texi}\text{\text{\texi}\text{\text{\texit{\texi{\texi}\text{\texi}\text{\texi}\text{\text{\texi{\texi{\texi}\titt{\texitit}}\\text{\texit{\texi{\texi{\texi{\texi{\tex	\[\]		•	\[\tag{\chi}	<i>_</i>	•	•	•	•	\sum	•	\[\frac{1}{2} \]	\tag{\tag{\tag{\tag{\tag{\tag{\tag{	
HUMANO															
ZHONG et al (2000) (1)															
LIU AND TSAI (1995) ⁽⁶⁾															
ACHOUR et al (1994) ⁽⁸⁾															
SAKU et al (1991) ⁽¹³⁾															
ENDO et al (1991) ⁽¹⁴⁾															
NAKAGAWA et al (1990) (16)															
TOMLIN & READ (1988) ⁽¹⁷⁾															
PDX FAP (1978) ⁽¹⁸⁾															

Litesse® (polidextrose) Status legal (Brasil)

→ Fibra (Resolução ANVISA RDC 360 / 2003):

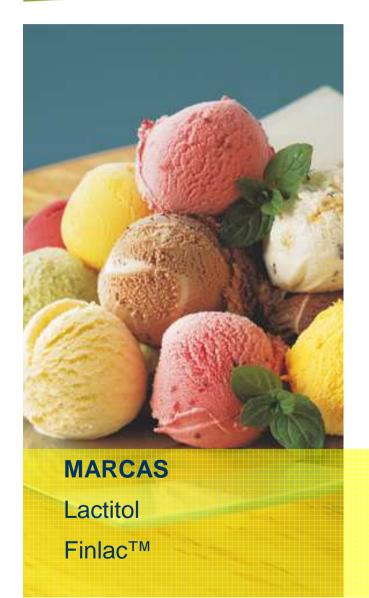
 é qualquer material comestível que não seja hidrolisado pelas enzimas endógenas do trato digestivo humano

ANVISA – reconhecido como fibra alimentar

Obs.: não há definição na legislação brasileira para o termo "prebiótico"

MAPA / DIPOA – AUP como fibra alimentar

Fonte de fibra 3,0 g / 100,0 g (sólidos)


1,5 g / 100,0 mL (líquidos)

Rico em fibra 6,0 g / 100,0 g (sólidos)

3,0 g / 100,0 mL (líquidos).

Lactitol

Produto

- → Poliol (açúcar alcóolico) obtido a partir da lactose
- Estrutura similar ao açúcar (sacarose)
 - → Versátil como substituto da sacarose

Principais benefícios

- Substituto de açúcar
- → Edulcorante de baixo valor calórico (2,4kcal/g)
- → Adequado para diabéticos (IG = 3)
- → Não-cariogênico
- Prebiótico.

APLICAÇÕES

Chocolate, produtos panificados, goma de mascar, sorvete, preparados de fruta, balas, chocolate, adoçantes de mesa, farmacêuticos e comprimidos

Lactitol - Propriedades

→ Propriedades técnicas similares entre sacarose e lactitol

- Fácil substituição do açúcar com lactitol
- Produtos com textura similar

- Produtos com propriedades organolépticas semelhantes
- Percepção sensorial dos aromas não é alterada.

Lactitol - Aplicações

Gomas de mascar

Coberturas

Barras de cereais

Confeitos

Chocolates

Panificação

Sorvete.

Xylitol

Produto

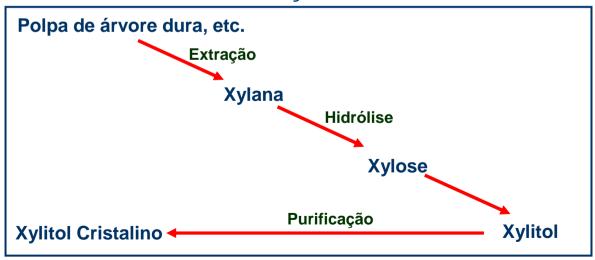
- → Poliol (açúcar alcóolico) de 5 carbonos
- → Natural
- → Cristalino

Principais benefícios

- → Valor calórico reduzido (2,4kcal/g)
- → Doçura e perfil de sabor semelhantes ao açúcar (sacarose)
- → Efeito refrescante natural
- → Adequado para diabéticos (IG = 8)
- Benefícios dentais comprovados (não-cariogênico e cariostático)

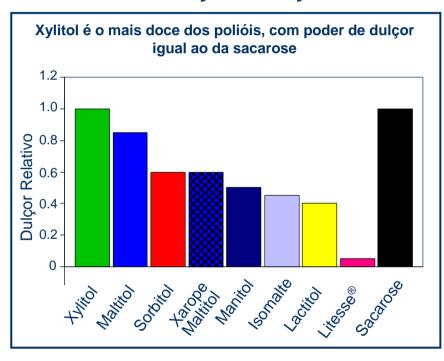
APLICAÇÕES

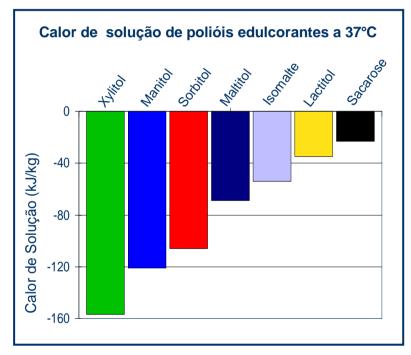
Goma sugar free, balas, chocolate, cosméticos, produtos de higiene oral, produtos fármacos, produtos dietéticos, adoçantes de mesa


Xylitol

- ✓ "Açúcar alcoólico" de 5-carbonos
- ✓ Natural
- ✓ Cristalino

Ocorrência Natural do Xylitol							
PRODUTO	XYLITOL (mg/100g ps)						
Ameixa amarela	935						
Morango	362						
Couve-flor	300	The same of the sa					
Framboesa	268						
Chicória	258						
Beringela	180						
Alface	131	0					
Espinafre	107						


✓ Obtenção.

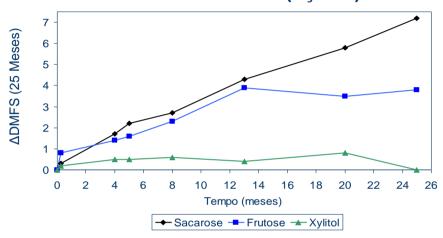


Xylitol – Dulçor e Refrescância

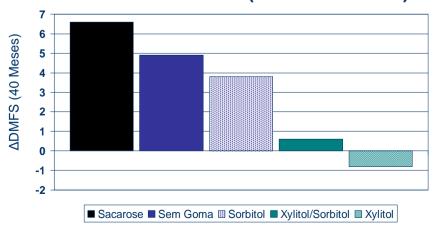
√ 100% do dulçor do açúcar com intensa sensação de refrescância.

- ✓ Ideal para sabores de menta e de frutas
- Mascara sabores amargos
- ✓ Alimentos, produtos de higiene oral, farmacêuticos e cosméticos.

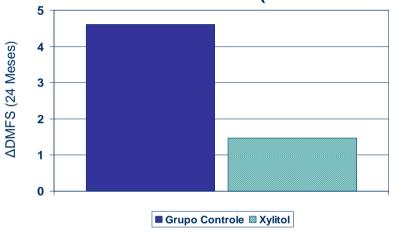
Xylitol – Vantagens Fisiológicas


- Benefícios Dentais Exclusivos
- Adequado para diabéticos
 - Baixo Índice Glicêmico [<10]
- Reduzido valor calórico
 - 2.4 kcal/g no Brasil, UE e EUA
 - 40% menor que sacarose/glucose
- Produzido no organismo humano
- Excelente tolerância
 - + 30g/dia dose única
 - + 50-70g/dia dose diária.

Xylitol – Quatro Décadas de Pesquisa



1970 - Estudo de Turku (Açúcar)


Ref: Scheinin, A., et al (1975): Acta Odont Scand 33 (Suppl. 70): 67

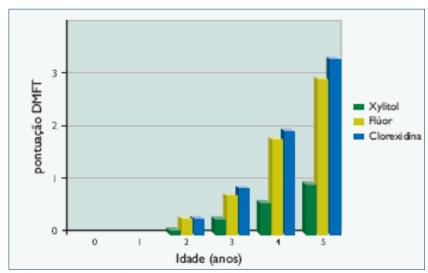
1990 – Estudo de Belize (Goma de Mascar)

Ref: Mäkinen, K. K., et al (1995): J Dent Res 74 (12): 1904

1980 - Estudo de Montreal (Goma de Mascar)

Ref: Kandelman, D. & Gagnon, G. (1990): J Dent Res 69 (11): 1771

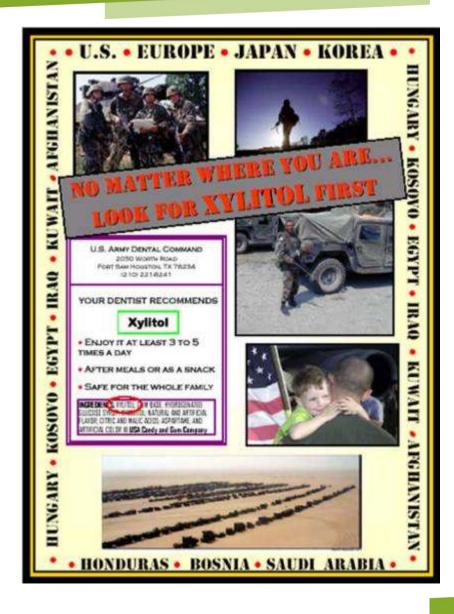
2000 - Estudo Estoniano (Pastilhas de Xylitol).



Ref: Alanen, P., et al (2000): Community Dentistry and Oral Epidemiology 28: 218-224 - 38 -

Redução de Cáries Infantis

- Cárie: doença infecto-contagiosa
- Transmissão mãe-para-filho de mutans streptococci
- Uso de xylitol pelas mães
- Baixo nível de colonização nos bebês
 - ✓ Redução efetiva na incidência de cáries infantis.



US Army & Xylitol

Agenda

Introdução

Light & Diet: Conceitos

Conceitos Nutricionais

Ingredientes Especiais

Legislação

Produtos de Mercado

Conclusão

Grupos de Alimentos

- Alimentos regulares (maioria)
- Alimentos com Informação Nutricional Complementar (Portaria 27/98)
 - "Light"
 - Fonte/rico vitaminas, minerais, fibras etc
 - Não há necessidade de avaliação/registro prévio junto à ANVISA
- → Alimentos para Fins Especiais ALIFINS (Portaria 29/98)
 - "Diet"
 - Registro junto à ANVISA
- → Novos alimentos (Resolução 16/99)
 - Alimentos com ingredientes em níveis superiores aos usuais ou sem histórico de consumo
 - Registro junto à ANVISA
- → Alimentos com alegações de propriedade funcional e ou de saúde (Res. 18 e 19/99).
 - Registro junto à ANVISA.

Alimento com alegação de propriedade funcional e/ou de saúde

- Alimento ou componente do alimento que:
- Mantenha a saúde
- Reduza o risco de doenças
- Papel fisiológico no:
 - crescimento,
 - desenvolvimento
 - e funções normais do organismo
- Cientificamente comprovado
- Apelos de saúde sem mencionar:
 - prevenção ou
 - cura de enfermidades.

Legislação – ANVISA 2007 Alegações Aprovadas - Polidextrose

POLIDEXTROSE

POLIDEXTROSE

Alegação

"As fibras alimentares auxiliam o funcionamento do intestino. Seu consumo deve estar associado a uma alimentação equilibrada e hábitos de vida saudáveis".

Observações

Esta alegação pode ser utilizada desde que a porção diária do produto pronto para consumo forneça no mínimo 3 g de Polidextrose se o alimento for sólido ou 1,5 g de fibras se o alimento for líquido.

Na tabela de informação nutricional deve ser declarada a quantidade de Polidextrose como **fibra solúvel, abaixo de fibras alimentares.**

Quando apresentada isolada em cápsulas, tabletes, comprimidos, pós e similares, a seguinte frase de advertência, em destaque e em negrito, deve constar no rótulo do produto:

"O consumo deste produto deve ser acompanhado da ingestão de líquidos".

Legislação – ANVISA 2007 Alegações Aprovadas – Xilitol (Goma de Mascar)

GOMA DE MASCAR

Xilitol

Alegação

"Xilitol neutraliza os ácidos que danificam os dentes. O consumo do produto não substitui hábitos adequados de higiene bucal e de alimentação"

Agenda

Introdução

Light & Diet: Conceitos

Conceitos Nutricionais

Ingredientes Especiais

Legislação

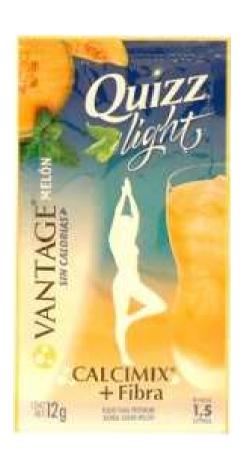
Produtos de Mercado

Conclusão

Alimentos Nutrição & Saúde Alguns Conceitos e Ingredientes mais Utilizados

- Produtos "Better-for-You"
 - Baixo valor calórico
 - Redução de açúcares / adequado para diabéticos
- → Ingredientes com forte presença estabelecida:
 - Vitaminas
 - Minerais
 - Fibras e prebióticos
 - Probióticos
 - Xilitol em gomas de mascar (benefícios para saúde bucal)
- "Novos" ingredientes que vêm ganhando espaço:
 - Probióticos
 - Antioxidantes
 - Proteínas e aminoácidos
 - Ômega 3
- Produtos com soja
- → Sabores que remetem a conceito de saúde intrínseco
- → Sem conservantes, corantes e/ou edulcorantes artificiais
- → Natural / orgânico
- → Alto conteúdo de nutrientes e/ou frutas (ex. "Five a Day).

Brasil – Suco Cyclus Equilíbrio


• Suco a base de soja

• Fonte de fibras

• "As fibras ajudam na motilidade intestinal".

Quizz Light – AMCO Foods (Mexico)

• Pó para preparo de refresco

• Contém polidextrose

• Com cálcio e fibras.

Brasil - Leite modificado em pó com fibras

Um copo proporciona um aporte similar a:

Fibras: 1 ½ papaia (160g)

Cálcio: 2 proporções de queijo (75g)

- ✓ Apelos: Fonte de Fibras / Funcional
- ✓ Ingredientes: Litesse, Cálcio, Leite, Soro

Valio – Pro Feel (Finlândia)

- Leite desnatado
- Sem lactose
- Redução calórica
- Rico em cálcio e vitamina D
- Fonte de fibra (polidextrose).

Finlândia – Valio A+ Viili

- Sobremesa láctea
- Com Polidextrose
- Com Probióticos (Acidófilos e Bifidobactérias)
- "Livre de glúten, ovos, colesterol e sal"
- Rico em fibras
- Sem lactose
- Baixo índice glicêmico.

Yakult Light - Austrália

• Light

Com polidextrose

Com Lactobacilos vivos

• "Mantém a Saúde do Sistema Imune".

Brasil – Activia Fibras - Danone

→ logurte enriquecido com fibras

→ Contém polidextrose

→ Auxilia no regulamento do intestino

Probiótico.

Svelty – Nestlé (Argentina)

→ Contém polidextrose e lactitol

→ Fonte de fibras

→ 67% menos gordura

→ 30% menos calorias.

Nestlé Sollys – Barra de Cereal com Soja (Brasil)

- Com "Actisoy" (proteína isolada de soja)
- Sem lactose / sem colesterol
- Fonte de cálcio
- Rico em proteínas
- Rico em fibras
- Com Polidextrose.

Bimbo – Carb Counting (EUA)

- Multi-grãos ou 100% farinha integral
- Fonte de fibras
- 3g de fibra / fatia (27g)

- 6g de carboidratos de impacto ("net carbs")
- Com polidextrose.

Panettone Village - Brasil

- Light
- 25% menos calorias
- Fermentação natural
- Rico em fibras
- Com polidextrose e lactitol.

Ülker Mavi Yesil - Turquia

• Cracker sabor queijo

• 25% menos calorias

• 4% polidextrose (fibra e prebiótico).

Brasil – Mistura para bolos light DuCôco

- → Sem adição de açúcar
- → 30% menos gordura
- → Fonte de fibras
- → Enriquecido com vitaminas A, C e E
- Contém Lactitol e Polidextrose.

Alibey – Wafer Gelado (Brasil)

Wafer Gelado light:

- 25% menos calorias
- Sem adição de açúcar
- 75% menos gorduras
- Polidextrose
- Lactitol.

Lindt (Finlândia)

• Chocolate Premium

Para diabéticos

• Com polidextrose

• Com lactitol.

Chocolate Sahne-Nuss - Nestlé (Chile)

Com polidextrose

Com lactitol

Com xylitol

• Sem açúcar (0% açúcar).

Mentos – Perfetti Van Melle (Holanda)

• Balas mastigáveis sem açúcar

• Com xylitol e polidextrose

• Com logo "Happy Tooth" da "Action Toothfriendly".

EUA – Trident

Com Xylitol

• Sem açúcar

• "Limpa os Dentes".

Brasil – Manteiga Regina Light

• Com Polidextrose (1g fibra / porção de 14g)

• "Light"

• 50% redução de gordura.

Halls Vapours (Canadá)

• Películas refrescantes ("strips").

Com xylitol

Kellogg's All Bran (EUA)

- Com iogurte em pó
- Com Polidextrose
- Rico em fibras
- 40% da IDR de fibras / porção.

Otsuka - Sopa de Milho (Japão)

- Alimento balanceado
- Direcionado para crianças e idosos
- Reduzido em sódio
- Rico em cálcio
- Com polidextrose.

Agenda

Introdução

Light & Diet: Conceitos

Conceitos Nutricionais

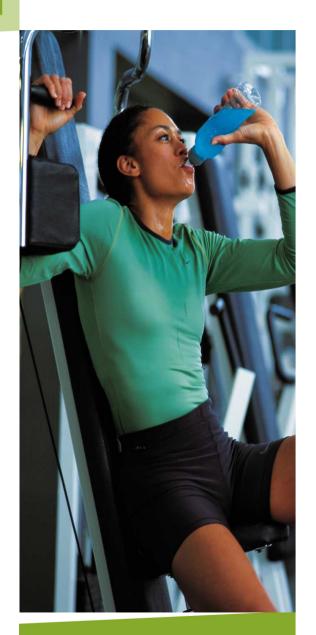
Ingredientes Especiais

Legislação

Produtos de Mercado

Conclusão

Criando benefícios com Nutrição & Saúde



- Clara mensagem dos benefícios nutricionais
- Provar ao consumidor que faz bem
- → Ingredientes especiais serão a grande referência
- → Bom sabor.

Obrigado!

