
MICROBIOLOGIA DE ALIMENTOS

Merenda causa intoxicação alimentar em crianças em Campo Grande (MS) - 29/09/2011

√200 crianças de uma das maiores escolas de Campo Grande foram parar no hospital, intoxicadas com a merenda.

✓O cachorro-quente foi substituído por pão com manteiga e leite com chocolate. Essa já é uma medida de emergência nas escolas públicas de Campo Grande. A mudança foi adotada depois que 180 alunos de uma escola municipal foram internados com intoxicação alimentar.

✓ As crianças passaram mal depois de almoçar. Os primeiros atendimentos foram no pátio da escola e depois os estudantes foram levados para hospitais e postos de saúde. O quadro era o mesmo: desidratação severa, vômitos, dores abdominais.

✓ Produtos suspeitos: salsicha e ovo.

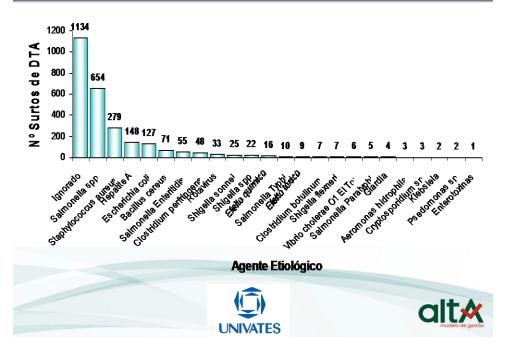
Sintomas das Toxinfecções Alimentares

- ✓ Dor abdominal
- ✓ Diarréia
- ✓ Febre
- √ Vômitos
- ✓ ... em alguns casos a MORTE!

<u>Incubação</u>: de 1 h até mais de 48 h após ingestão do alimento contaminado.

Dados Anvisa - Toxinfecções Alimentares

- √ 200 doenças podem ser veiculadas ao homem pelos alimentos anualmente
- ✓ Os agentes podem ser: bactérias, fungos, vírus, parasitas, agentes químicos e substâncias tóxicas
- ✓ As bactérias são responsáveis por 70% dos surtos e 90% dos casos
- √ 50% dos surtos ocorrem em serviços comunitários (restaurantes)
- √ 5% em alimentos industrializados
- √ 15% em residências, na produção caseira de alimentos
- √ 30% de origem desconhecida



Doenças Transmitidas por Alimentos (DTA)

Agente	(%)
Bactérias	87
Vírus	9
Parasitos	1
Substâncias químicas	4

Surtos de DTA por agente etiológico – Fone MS (Brasil, 1999-2003)

Doenças Transmitidas por Alimentos (DTA)

Infecção- Ingestão de alimentos contendo células viáveis, ocasionando a multiplicação de microrganismo patogênico nos intestinos

Toxinose- Ingestão de alimentos contendo toxinas pré-formadas

Doenças Transmitidas por Alimentos (DTA)

MULTIPLICAÇÃO NO ALIMENTO \rightarrow TOXINA \rightarrow VÔMITO

 $\textbf{MULTIPLICAÇÃO NO INTESTINO} \rightarrow \textbf{TOXINA} \rightarrow \textbf{DIARREIA}$

Microorganismos

MICRORGANISMO	IMPORTÂNCIA	ALIMENTOS ENVOLVIDOS
Salmonella sp	Causa infecções devido à falta de higiene ou processamento incorreto de alimentos, permitindo a multiplicação desta bactéria. Manipuladores portadores de Salmonella.	Leite cru, produtos de laticínios, carnes de aves, suínos, e bovinos, ovos, água e moluscos.
Shiguella sp	Indicadoras de higienização. Causam diarréia.	Hortaliças, frutas, saladas e leite.
Escherichia coli	Indicador de uma higiene deficiente ou de uma deficiência no processo. Várias cepas são toxigênicas.	Leite cru, produtos lácteos contaminados ou elaborados incorretamente, carne crua, vegetais
Escherichia coli O157:H7	Provoca colite hemorrágica, síndrome urêmica hemolítica.	Hambúrguer, leite cru, cidra de maçã

Microorganismos

MICRORGANISMO	IMPORTÂNCIA	ALIMENTOS ENVOLVIDOS
Listeria monocytogenes	Pode multiplicar lentamente sob refrigeração. Taxa de mortalidade de 30% nos infectados.	Queijos, produtos cárneos, pescados e vegetais.
Clostridium botulinum (toxina botulínica)	Os esporos podem sobreviver ao tratamento térmico, químico e secagem. Toxina termolábel, veneno biológico potente.	Conservas industriais e principalmente conservas caseiras.
Clostridium perfringens	Esporos termorresistentes. Produz enterotoxina durante esporulação no intestino.	Carnes, frangos, sopas desidratadas e molhos à base de carnes.
Bacillus cereus	Esporos termorresistentes. Pode produzir toxinas.	Arroz, leite, vegetais cozidos, cereais, condimentos, carnes, pescado.

Microorganismos

MICRORGANISMO	IMPORTÂNCIA	ALIMENTOS ENVOLVIDOS
Bacillus subtilis	Esporos termorresistentes. Contaminante importante de produtos para panificação.	Carnes, arroz, produtos de confeitaria. Pó para doces, pão, maionese, cebolas em vinagre.
Bacillus Licheniformis	Esporos termorresistentes, Contaminante importante de tortas, produtos de confeitaria, produtos de panificação.	Carne cozida, vegetais, salsichas cozidas, doces a base de ovos e leite, pão.
Staphylococcus aureus (toxina estafilocócica	Contamina os alimentos por manipulações incorretas. Produz toxina termorresistente	Pescado, leite cru, produtos lácteos, principalmente queijos, produtos cárneos, massas, produtos de confeitaria, preparações à base de frango, ovos e outros.

Microorganismos

MICRORGANISMO	IMPORTÂNCIA	ALIMENTOS ENVOLVIDOS
Bolores micotoxigênicos (micotoxinas)	Cresce em alimentos muito ácidos e com baixa Aw. Em meio ácido, a produção de toxina é baixa ou nula. Produção de micotoxinas. Por exemplo Aflatoxinas.	Cereais e oleaginosas, suco de maçã, leite.
Vírus (enterovírus)	Gastroenterite viral. Não se multiplicam nos alimentos.	Moluscos, leite, creme, sucos de frutas, carnes frias, águas, verduras.
Giardia intestinalis (lamblia)	Água, águas residuais, intestino delgado do homem, porco.	Água e vegetais crus.
Taenia saginata	Trato intestinal de homens e bovino.	Larvas em carne.

Contaminação de Alimentos

Visando a produção e manutenção de alimentos os órgãos competentes (MA, ANVISA) instituíram legislação específica, portarias, resoluções sobre procedimentos de controle que visam à redução e eliminação dos riscos de contaminações de alimentos, desde seu preparo, processamento, passando pelo transporte, distribuição, armazenamento, até seu consumo.

Exemplos de Contaminação

Biológicos: são provocados por microrganismos (bactérias, vírus, fungos, entre outros) que não podemos ver a olho nu, mas que são as principais causas de contaminação nos alimentos;

ouímicos: são provocados por desinfetantes, produtos para matar ratos, inseticidas, antibióticos, agrotóxicos e outros venenos;

Físicos: são materiais que podem machucar, como pregos, pedaços de plástico, de vidro e de ossos e outros.

Contaminação de origem microbiológica

Macrobiológica: moscas, caramujos, pulgões, lesmas.

Microbiológica: causada por bactérias, fungos, vírus e parasitas.

No caso da contaminação de origem biológica, a mesma pode se dar por diferentes maneiras, sendo as principais vias de transmissão a **humana e a ambiental**, podendo ser diretas ou indiretas.

Contaminação através do homem

Transmissão direta:

O homem pode fazer a transmissão diretamente através de si, de <u>seu corpo</u> e do que é de si expelido.

Os mais importantes pontos de transmissão são as fezes, o nariz, a boca, as mãos, a urina e ferimentos.

Contaminação através do homem

Transmissão indireta:

Ocorre através do material humano (fezes, urina, etc), só que, quem os leva até os alimentos são os chamados <u>vetores</u> como as moscas, baratas, ratos, etc, que pousam ou passam sobre esses materiais, contaminando suas patas e levando microrganismos até o alimento, equipamentos, utensílios, pisos, paredes e tetos que, por sua vez, ficarão contaminados.

Contaminação ambiental (solo, água, ar, animais)

<u>Material animal</u> (fezes, urina, pêlo e saliva de ratos, baratas, moscas, etc) que contaminam o ambiente:

- contaminação cruzada (superfícies de trabalho, equipamentos, utensílios, etc).
- moscas e baratas podem <u>pousar sobre os alimentos com</u> suas patas contaminadas com microrganismos patogênicos ou parasitas, e ainda <u>depositar seus ovos</u>.
- os animais podem ser abatidos já contaminados com microrganismos patogênicos.

Contaminação ambiental (solo, água, ar, animais)

O que se deve ter sempre em mente é que a produção de alimentos contaminados por uma indústria é inadmissível.

Para evitar tal situação é que as <u>empresas devem adotar</u> <u>procedimentos de controle, desde a recepção da matéria-</u> <u>prima até a distribuição do produto final.</u>

Além disso, deve-se ter um rígido <u>controle sanitário</u> no que se refere à presença de <u>barreiras</u> para impedir a entrada de insetos na indústria, uma rigorosa <u>higiene do ambiente</u>, superfícies de contato e <u>pessoal</u> para evitar contaminação cruzada.

Caracterização das doenças de origem alimentar

- Doenças produzidas a partir de contaminação química
- Doenças causadas por microrganismos cujo alimento é o meio de Transporte
- Doenças causadas por microrganismos cujo alimento é o meio de crescimento

Dando-se destaque as duas últimas, ou seja, aquelas de origem microbiológica, já que os casos de doenças originadas a partir de substâncias tóxicas adicionadas aos alimentos são raros.

Caracterização das doenças de origem alimentar

Consequencias dos Perigos em Alimentos

Para o Consumidor	Para a Empresa
Agravos leves/médiosAgravos severosMorte	 Perda de clientes Divulgação pela mídia Prejuízo por perda do produto Custos com processos, multas e indenizações Fechamento da empresa

Fatores Intrínsecos e Extrínsecos

A multiplicação bacteriana depende de <u>fatores</u> <u>INTRÍNSECOS</u> e <u>EXTRÍNSECOS</u> do alimento. Esses fatores afetam o crescimento microbiano antes, durante ou depois do processamento dos alimentos.

O conhecimento dos fatores que favorecem ou inibem a multiplicação dos microrganismos <u>é</u> <u>essencial</u> para compreender os princípios básicos que regem tanto a alteração como a conservação dos alimentos.

Fatores Intrínsecos

- Atividade de água (Aw)
- Potencial Hidrogeniônico (pH)
- Nutrientes
- Antimicrobianos naturais
- Interação entre microrganismos

Fatores Intrínsecos - Atividade de água (Aa)

O crescimento bacteriano necessita de presença de água disponível de alguma forma, a Aa é uma potencial fonte desta água que beneficia ou inibe o crescimento bacteriano.

A água pura tem valor de Aa igual a 1. Portanto, os valores de Aa dos alimentos oscilarão entre 0 e 1.

Fatores Intrínsecos - Atividade de água (Aa)

Valores mínimos de Aa que premitem a multiplicação dos principais grupos de microorganismos

Grupo de microrganismos	Valor mínimo de Aa
Maioria das bactérias	0.91
Maioria das leveduras	0.88
Maioria dos bolores	0.80
Bactérias halofílicas	0.75

Fatores Intrínsecos - Atividade de água (Aa)

Grupo de Alimentos	Valor de Aa
Leite e laticínios (maioria) logurtes	>0.98 0,93 a 0,97
Frutas frescas e vegetais	> 0,97
Aves e pescado frescos	> 0.98
Carnes frescas	> 0.95
Ovos	0,97
Pão	0.95 a 0.96
Queijos (maioria)	0.91 a 0.99
Queijo Parmesão	0.68 a 0.76
Geleia	0.75 a 0.80
Frutas secas	0.51 a 0.89
Bolachas e biscoitos	0.30 a 0.40
Cereais	0.10 a 0.20

Fatores Intrínsecos-pH(Concentração de íon hidrogênio, acidez ou alcalinidade relativas)

рН	Microrganismos
>4,5 (Alimentos de baixa acidez)	Predominância de crescimento bacteriano
4,5 a 4,0 (Alimentos ácidos)	Predominância de leveduras e bolores. Algumas bactérias esporogênicas e não esporogênicas
<4,0 Alimentos muito ácidos	Restrito quase que exclusivamente a bolores e leveduras

Fatores Intrínsecos-pH(Concentração de íon hidrogênio, acidez ou alcalinidade relativas)

Grupo de Alimentos	рН
Leite e laticínios (maioria) logurtes	6,3 a 6,5 3,7 a 4,4
Frutas frescas e vegetais	1,8 a 6,7
Aves pescado frescos	6,2 a 6,4 6,6 a 6,8
Carnes frescas	5,1 a 6,2
Ovos	7,1 a 7,9
Pão	5,3 a 5,8
Queijos (maioria)	4,9 a 5,9
Geleia	3,5
Frutas secas	3,7 a 4,4

Fatores Intrínsecos - Nutrientes

- Fonte de energia: açúcares, alcoóis, amido, celulose, lipídeos e gordura.
- Fonte de nitrogênio: aminoácidos, peptídeos e proteínas.
- Minerais: sódio, potássio, cálcio, magnésio, ferro, cobre, zinco.

Fatores Intrínsecos - Antimicrobianos Naturais

- · Leite: lactoferrina, conglutinina, lisozina
- · Ovos: conalbumina, lisozina
- Condimentos (cravo, canela, orégano): eugenol, timol, calvacrol.

Fatores Intrínsecos - Interação entre microrganismos

- Produção de metabólitos:
 bactérias láticas ↓pH, certas leveduras ↑ pH
- Estreptococos e lactobacilos: produzem água oxigenada que é inibidor para bactérias
- Exclusão competitiva

Fatores Extrínsecos

- Temperatura
- Umidade Relativa do Ambiente (UR)
- Atmosfera envolvendo o alimento
- Embalagem
- Transporte

Fatores Extrínsecos - Temperatura

- •O crescimento microbiano apresenta uma faixa muito ampla de temperatura;
- •A temperatura exerce influência sobre a velocidade do crescimento, número de células de uma população;
- •O valor ótimo de temperatura de crescimento determina o grupo a que o microrganismo pertencerá:

Microrganismo	T(°c) ótima	T(⁰c) máxima	T(ºc) mínima
Psicrófilo	20 a 30	35	0 a 5
Mesófilos	30 a 40	40 a 50	5 a 25
Termófilos	45 a 65	60 a 90	35 a 45

Fatores Extrínsecos - Umidade Relativa do Ambiente (UR)

A relação entre Aa e UR deve ser considerada para melhor adequar as condições de embalagem e estocagem dos alimentos, para garantir o controle do desenvolvimento microbiológico.

Ambiente de UR elevado → Alimento com baixa Aa = Absorção de umidade do ambiente pelo alimento

Forma estrutura granulosa \rightarrow Deterioração geralmente por fungos.

Ambiente de UR reduzida → Alimento alta Aa = Desidratação superficial → Prejuízo sensorial.

Fatores Extrínsecos - Atmosfera envolvendo alimentos

- Presença de $O2 \rightarrow$ Aeróbios, facultativos
- Ausência de O2 → Anaeróbios, facultativos

Exemplo: Atmosfera modificada para conservação de alimentos

✓ Carne — Embalagem a vácuo para inibição de microrganismos aeróbios.

Principais microrganismos de importância na indústria de alimentos

Não patogênicos	Patogênicos
 Deteriorantes 	 Causam infecções e
Úteis industrialmente	toxinoses transmitidas pelos alimentos

Principais microrganismos de importância na indústria de alimentos

4 Não patogênicos - Deteriorantes

Exemplos: Clostridium spp, Bacillus spp, Bactérias láticas, Pseudomonas spp, Flavobacterium spp, Leveduras

Principais alterações causadas por deteriorantes nos alimentos

- Acidificação
- Degradação de proteínas
- Viscosidade
- Amolecimento
- Manchas e pigmentos
- Turvação
- · Crescimento de bolores
- Estufamento
- Fermentação
- Alteração sensorial de odor e sabor

Principais microrganismos de importância na indústria de alimentos

♣ Não patogênicos – úteis industrialmente

- Bactérias láticas
- Leveduras

São benéficos na produção de:

- Produtos de panificação
- Bebidas lácteas (iogurtes, leites fermentados, etc)
- Bebidas (cerveja, vinho, rum, etc)
- Queijos (Roquefort, Camembert, etc)
- Vegetais fermentados (azeitonas, picles, chucrutes)
- Antibióticos (penicilina)

Principais microrganismos de importância na indústria de alimentos

Patogênicos

Enterobacteriaceae

Escherichia coli , Salmonella spp, Shigella spp

- Vibrionaceae
- Campylobacteriaceae
- · Staphylococcus aureus
- Bacillus spp
- Clostridium spp
- Listéria spp
- Fungos micotoxigênicos
- Vírus

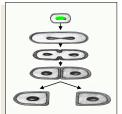
Bactérias

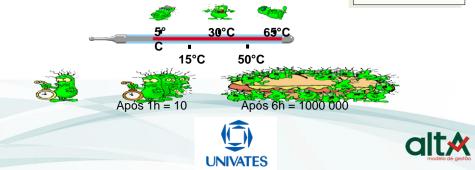
- Organismos unicelulares
- Encontram-se na natureza
- Apresentam-se sob diferentes formas

Algumas

São úteis Causam deteriorações nos alimentos Outras causam doenças Produzem toxinas

- Podem formar esporos
- Podem formar biofilmes




Multiplicação Bacteriana

A reprodução mais comum nas bactérias é assexuada por bipartição.

Ocorre a duplicação do DNA bacteriano e uma posterior divisão em duas células.

As bactérias multiplicam-se por este processo muito rapidamente <u>quando dispõem de</u> condições favoráveis.

Fungos - Bolores ou Mofos

Multiplicam por:

- o Esporulação
- Brotamento
- o Fragmentação das hifas
- Sexuada

racterísticas:

- Alta capacidade de disseminação no ambiente
- Alteram os alimentos e podem provocar doenças
- Principais deteriorantes dos vegetais
- · Alguns são úteis industrialmente
- Bolores são formadores de micotoxinas

Fungos – Leveduras ou Fermentos

- Unicelulares
- Multiplicam por gemulação
 - Frequentes nos vegetais
 - Deterioram alimentos
 - Normalmente não causam danos à saúde
 - Leveduras são usadas na produção de pães, bebidas e outros produtos fermentados

Vírus

- √ Menores que as bactérias
- ✓ Necessitam de uma célula viva para se reproduzir
- ✓ Podem contaminar alimentos e água

- ✓São veiculados por alimentos, mas não se multiplicam neles
- √Sobrevivem ao congelamento

Doenças causadas por Vírus

- Hepatite A HAV
- Hepatite E HEV
- Gastrenterites Rotavírus UNIVATES

Qualidade dos Alimentos - Indicadores

- Coliformes Totais, Termotolerantes e E. coli
 - Enterobacterias
 - Mesófilos
 - Psicrotróficas
 - Termófilas
 - Estafilococos
 - Fungos

Inocuidade dos Alimentos - Indicadores

Verificada pelos microrganismos patógenos:

Gram-positivos	Gram negativos
(<u>Intoxicação</u>)	(<u>Infecção</u>)
Listeria monocytogenesS. aureus,C. perfringensBacillus cereus	SalmonellaE coliCampylobactyerE.sakazakiiShigella

Métodos de Detecção

Os métodos de detecção são categorizados em dois grupos:

- ✓ Tradicionais
- ✓ Rápidos

Métodos de Detecção

Métodos Tradicionais

Vantagens:

- Reconhecidos por órgãos oficiais
- Pouco sensíveis
- Econômicos
- Não necessitam de equipamentos caros
- Necessitam de maior tempo para treinamento

Desvantagens:

- Requerem maior tempo para preparo
- Períodos longos de incubação
- Maior utilização de meios de cultura
- · Maior tempo do analista
- Sujeito a falhas humanas

Métodos de Detecção

Métodos Rápidos

Vantagens:

- Preparação rápida
- Menor tempo para obtenção

do resultado

• Maior precisão na interpretação

do resultado

- Redução de custos por reduzir espera no processo
- Aumenta a capacidade analítica

Desvantagens:

- Nem todos têm aprovação de órgãos oficiais
- · Alto investimento inicial

Métodos de Detecção

Métodos Tradicionais

Basicamente esta metodologia divide-se nas seguintes etapas:

- ✓ Pesagem da amostra (25g ou 25mL para 225mL do meio de cultura)
- ✓ Dissolução para amostras sólidas
- ✓ Pré-enriquecimento em caldo apropriado (recuperação da células lesadas)
- ✓ Enriquecimento (Inibição do crescimento de organismo indesejados)
- ✓ Cultivo de ágar seletivo (Meio diferencial para distinguir microrganismos alvo de indesejáveis

UNIVATES

√ Testes bioquímicos e sorológicos quando apropriados

Métodos de Detecção

Métodos Tradicionais

Contagem total em placas

Este método pode ser utilizado para detectar vários grupos de microrganismos

Variando o tipo de meio e as condições de incubação específicas para o microrganismo que esteja em questão, é possível selecionar grupo, gênero ou espécie que se deseja contar.

Determinações:

- Aeróbios mesófilos
- Aeróbios psicrotróficos
- Bolores e leveduras
- Clostrídios sulfito redutores
- Staphylococcus aureus
- Bacillus cereus
- Clostridium perfringens

Amostragem - Objetivo

Analisar amostras alimentícias e ambientais quanto à presença de bactérias indicadoras, patogênicas ou deteriorantes, fungos e toxinas é uma prática padrão para garantir a segurança e a qualidade do alimento para o consumo.

Amostragem - Validade

Os microrganismos estão em um ambiente dinâmico no qual a multiplicação e a morte de diferentes espécies ocorrem em taxas diversas. Isso significa que o resultado de uma análise é válido apenas para o momento da amostra.

Amostragem - Abrangência

A homogeneidade de alimentos é rara, principalmente quando se trata de sólidos (pó ou grão).

- ✓A retirada da unidade analítica, deve ser feita de forma a garantir que a porção removida seja representativa de todo o lote (yn +1).
- ✓ A unidade analítica utilizada na análise da maioria dos alimentos é de 25g.
- ✓ Antes da abertura das embalagens para coleta, deve-se desinfetar a área externa com etanol 70%.
- ✓ As alíquotas devem ser retiradas das embalagens de forma asséptica.

Característica de alteração dos alimentos

Classificação	Descrição	Alimentos	
Estáveis ou não perecíveis	Não são alterados facilmente	Açúcar, Farinha	
Semi perecíveis	Conservando e manipulando de forma apropriada permanecem sem alteração	Batata, maçã, nozes	
Perecíveis	Incluem os alimentos mais importantes do consumo cotidiano, os quais alteram com facilidade	Carnes, pescados,leite, ovos, maioria das frutas e hortaliças	

Princípios em que se baseia a conservação de alimentos

- Preservação ou atraso (vida de prateleira) da decomposição bacteriana:
 - Mantendo os alimentos sem germes (assepsia)
 - Eliminando os germes existentes (ex: filtração)
 - Colocando obstáculo ao crescimento e atividade microbiana (ex: baixa temperatura, dessecação, conservantes químicos)
 - Destruindo microorganismos (Ex: calor, radiação)

Princípios em que se baseia a conservação de alimentos

- Prevenção ou atraso da autodecomposição dos alimentos
 - Destruindo ou inativando enzimas (escaldando)
 - Prevenindo ou atrasando reações químicas (ex: antioxidante)
- Prevenção das lesões ocasionadas por insetos, animais superiores, causas mecânicas, etc

Métodos de Conservação

- 1. Assepsia
- 2. Eliminação do Microorganismo
- 3. Manter condições anaeróbias
- 4. Emprego temperaturas
- 5. Dessecação
- 6. Uso de aditivos

Higienização: Limpeza e Sanitização

Higienização: limpeza e sanitização

Limpeza: remoção de resíduos orgânicos e minerais, aderidos à superfícies, constituídos principalmente por proteínas, gorduras e sais minerais.

Sanitização: eliminação de microrganismos.

A limpeza reduz a carga microbiana das superfícies mas não a nível satisfatório

Higienização: Limpeza e Sanitização

Indicado para remoção de:

Resíduos orgânicos:

- Gordura: saponificação e/ou emulsificação

- Proteínas: solubilização

Resíduos minerais:

Uso de agentes complexantes e soluções ácidas

Sanitização

Tabela 2 : Resumo comparativo entre os sanitizantes

Sanitizante	Bacteria			Bolores e Leveduras	Virus	
	Gram +	Gram -	Micobactérias	esporos	Dolores e Leveduras	71145
Quaternário de Amônio	+++	+			+	
Clorohexidina	+++	++-			+	
lodophor	+++	+++	+	+	+++	+++
Ácido Peracético	+++	+++	+++	+++	+++	+++
Peróxido de Hidrogênio	+++	++-	++-	+++	+	+

FONTE: Evangelista (2003)

Principais superfícies usadas na indústria de alimentos

- Madeira: difícil higienizar
- · Aço carbono: usar detergente neutro
- Estanho: n\u00e3o deve entrar em contato com alimentos
- Concreto: danificado por alimentos ácidos e agentes de limpeza
- Tinta: alguns são adequados à indústria de alimentos
- Aço Inoxidável: resiste à corrosão, fácil higienização, caro
- Vidro
- Borracha

Controles Microbiológicos em processo

A redução ao mínimo da contaminação microbiana e a conservação da qualidade dos produtos exige um exame de:

- Matérias primas utilizadas
- Limpeza
- Higiene e sanitização de equipamentos
- Controle do mecanismo de conservação
- Supervisão dos processos de embalagens e armazenamento

Definição de Critérios Microbiológicos

Padrão Microbiológico: Obrigatório.

Lei ou regulamento que estabelece o número máximo tolerável de microorganismos, determinados por métodos estipulados oficialmente.

- Limite Microbiológico recomendável: De orientação.
 Limite máximo tolerável de microorganismos,
 determinado por métodos estipulados sugerido como aceitável para um determinado alimento.
- Especificação Microbiológica:

Limite máximo tolerável de microorganismos, determinado por métodos estipulados de uso interno em uma firma para controlar a qualidade de seu produto.

UNIVATES

Análises Microbiológicas

Antes de iniciar os ensaios de microbiologia, é necessário que fatores importantes sejam compreendidos

Descontaminação e descarte de resíduos

Lavagem da vidraria

Preparo dos meios de cultura

Acondicionamento e esterilização

Higiene do laboratório e analistas

Análises Microbiológicas

Descontaminação e descarte de resíduos

Todos os materiais resultantes das análises microbiológicas, devem ser esterilizados em autoclave, a 121º C por 30 minutos, observando os seguintes cuidados:

- Afrouxar as tampas de todos os frascos com tampa rosca
- Adicionar detergente ou água nos estojos de pipetas para facilitar a remoção dos resíduos após a esterilização.
- Adicionar ampola para teste de esterilidade. Ex.: *Bacillus stearothermophilus*

ATENÇÃO: Estes procedimentos devem sempre ser realizados com luvas.

Análises Microbiológicas

Lavagem da vidraria

A lavagem da vidraria e utensílios é uma etapa de fundamental importância no preparo do material de microbiologia, dois fatores importantes devem ser considerados:

- √ A escolha do detergente (Aniônicos com compostos alcalinos, solução sulfocrômica e solução alcoólica de 1N de hidróxido de sódio)
- ✓ **Método de enxágue** Para completa remoção dos agentes de limpeza, recomenda-se de 6 a 12 enxágues sucessivos em água corrente, seguido de no mínimo dois enxágues em água destilada.

Análises Microbiológicas

Preparo dos meios de cultura

O preparo do meio de cultura deve ser seguir instrução do fabricante.

A água a ser utilizada para o preparo deve ser destilada e com os parâmetros de pH, e condutividade controlados.

- ✓ O pH do meio de cultura deve estar conforme especificado para o microrganismo a ser pesquisado (vide informação do fabricante) * Deve ser analisado antes e após a autoclavação.
- ✓ A dissolução do meio de cultura pode ser feita em forno microondas, banho termostático fervente ou diretamente no fogão em banho maria,

Análises Microbiológicas

Acondicionamento e esterilização

- A autoclavação (tempo) deve seguir os ajustes da calibração/validação da autoclave.
- Materiais secos podem ser esterilizados em estufa a 170ºC por mínimo de 2h
- Os meios de cultura que não forem autoclavados deverão ter um branco testado antes de liberar o lote para uso.
- Se for possível, acompanhar a batelada com cepa padrão.
- Identificar os frascos ou placas de petry no mínimo com as seguintes informações:
- ✓ nome do meio
- ✓ número de lote (seis dígitos: dia/mês/no da batelada da autoclave do dia)
- √ data de fabricação (dia que foi preparado e esterilizado).
- √ data de vencimento
- ✓ responsável

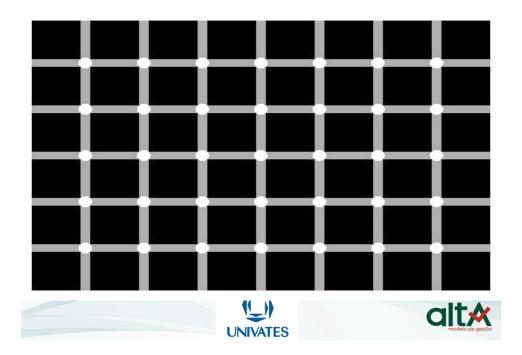
Análises Microbiológicas

Higiene do laboratório

- A limpeza e higienização dos pisos, paredes, teto, bancadas e equipamentos do laboratório de microbiologia deve ser realizada diariamente, para garantir a integridade dos resultados obtidos.
- Pisos, paredes e tetos podem ser higienizados com solução de hipoclorito de sódio 5% e álcool 70% de forma alternada.
- Bancadas podem ser higienizadas com ácido peracético 1%, hipoclorito de sódio 5% e Álcool 70% de forma alternada para que não haja resistência dos microrganismos.

Análises Microbiológicas

Higiene dos analistas


- A entrada no laboratório de microbiologia deve ser restrita
- Os analistas devem sanitizar as mãos com álcool gel várias vezes durante as análises
- Devem usar jaleco, touca, mascara, luvas e óculos
- Não devem usar brincos, anéis, colares e relógios
- Em hipótese alguma os analistas podem proceder com atos insatisfatórios de higiene no interior do laboratório.

Exemplo: coçar cabeça, nariz, ouvidos, etc.

CONTE OS PONTOS PRETOS

Obrigada!

Mirian Herrmann

(51) 9915.9843

mirian@qualidadealta.com.br

www.qualidadealta.com.br

